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Abstract 

Given a configuration of pebbles on the vertices of a connected graph G, a pebbling move (or pebbling 

step) is defined as the removal of two pebbles from a vertex and placing one pebble on an adjacent 

ǀerteǆ. The doŵiŶatioŶ Đoǀer peďďliŶg Ŷuŵďer, ψ;GͿ, of a graph G is the ŵiŶiŵuŵ Ŷuŵďer of peďďles 

that are placed on V(G) such that after a sequence of pebbling moves, the set of vertices with pebbles 

forms a doŵiŶatiŶg set of G, regardless of the iŶitial ĐoŶfiguratioŶ. IŶ this paper, ǁe deterŵiŶe ψ;GͿ for 

Sun. 
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1 Introduction 

 One recent development in graph theory, suggested by Lagarias and Saks, called pebbling, has 

been the subject of much research. It was first introduced into the literature by Chung [1], and has been 

developed by many others including Hulbert, who published a survey of graph pebbling [5]. There have 

been many developments since Hulbert's survey appeared. 
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 Given a graph G, distribute k pebbles (indistinguishable markers) on its vertices in some 

configuration C. Specifically, a configuration on a graph G is a function from V(G) to N{0} representing 

an arrangement of pebbles on G. For our purposes, we will always assume that G is connected. A 

pebbling move (or pebbling step) is defined as the removal of two pebbles from some vertex and the 

placement of one of these pebbles on an adjacent vertex. Define the pebbling number, π;GͿ, to ďe the 

minimum number of pebbles such that regardless of their initial configuration, it is possible to move to 

any root vertex v, a pebble by a sequence of pebbling moves. Implicit in this definition is the fact that if 

after moving to vertex v one desires to move to another root vertex, the pebbles reset to their original 

configuration. 

 The domination cover pebbling [3] is the combination of two ideas cover pebbling [2] and 

domination [4]. This introduces a new graph invariant called the domination cover pebbling number, 

ψ;GͿ. ReĐall that, a set of ǀertiĐes D iŶ G is a doŵiŶatiŶg set if eǀerǇ ǀerteǆ iŶ G is either iŶ D or adjaĐeŶt 

to a ǀerteǆ of D. The Đoǀer peďďliŶg Ŷuŵďer , λ;GͿ, is defiŶed as the ŵiŶiŵuŵ Ŷuŵďer of peďďles 

required such that giveŶ aŶǇ iŶitial ĐoŶfiguratioŶ of at least  λ;GͿ peďďles, it is possiďle to ŵake a series 

of pebbling moves to place at least one pebble on every vertex of G. The domination cover pebbling 

Ŷuŵďer of a graph G, proposed ďǇ A. Teguia, is the ŵiŶiŵuŵ Ŷuŵďer ψ;G) of pebbles required so that 

aŶǇ iŶitial ĐoŶfiguratioŶ of at least ψ;GͿ peďďles ĐaŶ ďe traŶsforŵed so that the set of ǀertiĐes that 

contain pebbles form a dominating set of G. In [3], Gardner et al. computed domination cover pebbling 

number for complete r-partite graph, path, wheel graph, cycle, and binary tree. We have also 

determined the domination cover pebbling number of some families of graph in [7-10]. We now 

proceed to determine the domination cover pebbling number for sun. 

2. Domination cover pebbling number for sun 

Definition 2.1 [6] A simple connected graph G is called a SUN if it contains exactly one cycle Cn and R 

distinct vertices not in Cn such that each vp  R is connected to exactly one vi  Cn.  A sun is denoted Cn. 

)d(

IR , where vi  I iff {vivp}  E(G) and (d) = max{(d(via, vib)} for all via, vib  I.  

 Now we give the labeling for Cn. 
)d(

IR . For Cn : v0v1v2 . . . vk1vkuk1 . . . u1v0 if n = 2k (k  2) and Cn : 

v0v1v2 . . . vk1uk1 . . . u1v0 if n = 2k  1 (k  2) and then label the vertices of R by, iv  if {vi iv }  E(G) i  0 

and vt if {vtv0}  E(G) and 
'
ju  if { ju '

ju }  E(G), where G = Cn. 
)d(

IR . 
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Lemma 2.2 The value of ψ(Cn. 
)d(

IR ) is attained when the original configuration consists of placing all the 

pebbles on any one of the vertices of R.  

Proof: Assume first that a worst configuration consists of more than one set of consecutively pebbled 

vertices (islands) in Cn and no pebbled vertices in R.  The cardinality of any such island in Cn is at most 

two, for were it to be three or more, one could relocate the pebbles to the inner one or two vertices, 

and there by causing a larger number of pebbles to be needed to cover dominate the vertices of 

Cn.
)d(

IR - a contradiction.  Thus each ͞island͟ consists of at most two vertices.  Now consider the effect 

of relocating all the pebbles onto a single island.  Once again one reaches a contradiction to the 

assumption that there could be more than one island since after relocating all the pebbles to a single 

island, one would now require more pebbles to cover dominate the vertices of the graph.  Next, assume 

that island in Cn consists of exactly two vertices.  Once again, we consider the effect of relocating all the 

pebbles to any one of the two pebbled vertices of Cn.  One would now require more pebbles to cover 

dominate the vertices of the graph.  So, our assumption is wrong.  

 Next, assume that a worst configuration consists of exactly one pebbled vertex in Cn and more 

than one pebbled vertex in R.  Now consider the effect of relocating all the pebbles in the vertex of Cn to 

a vertex of R.  One would now require more pebbles to cover dominate the vertices of the graph – a 

contradiction.  From this, we conclude that any worst configuration never consists of a pebbled vertex in 

Cn. 

 Finally, assume that a worst configuration consists of more than one pebbled vertex in R.  Now, 

relocate all the pebbles from the vertices of R onto a single vertex of R.  Once again one reaches a 

contradiction to the assumption that there could be more than one pebbled vertex, since after 

relocating all the pebbles to a single vertex of R , one would now require more pebbles to cover 

dominate the vertices of the graph Cn.
)d(

IR .  The statement follows.      

 Since placing all the pebbles on a single vertex of R is a worst configuration, we will now 

determine the value of ψ (Cn. 
)d(

IR ) 
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Theorem 2.3 Let Cn. 
)d(

IR  be the sun.  Then 

ψ(Cn.
)d(

IR )= max
























 )()(12)(121212 tvuPl

Iu
vPk

Iv

j

Iu

i

Iv lkji
  for all 

vt R, where vk  and ul are the initial vertices of the paths Pv and Pu respectively and  

(vt) = 1 if both v1 and u1 are pebbled and (vt) = 0 if u1 or v1 or both are unpebbled. Also,  









3)(

2100
)(

vifvP

ororvif
vP


  

       and 









3)(

2100
)(

uifuP

ororuif
uP


 . 

Proof: We first prove this theorem for n=2m. 

Case 1: Consider the Sun Cn. 
)d(

IR  where n = 2m (m  2).  By Lemma 2.2, fix a target vertex from R.  Label 

the target vertex by vt and then label the remaining vertices as given in Definition 2.1.  Now, we have to 

put one pebble each at the vertices vi and uj which belong to I, to cover dominate the vertices 
'
iv  and 

'
ju  respectively.  For that, we need 2

i+1
 and 2

j+1
 pebbles at vt (since, d(vt, vi) = i + 1; d(vt, uj) = j + 1) for 

the vertices vi and uj respectively.  So, totally we need 
11 22 






 j

Iu

i

Iv ji

pebbles to cover 

dominate the vertices which are not in Cn for all vi, uj  I .  Note that, in this process, we have also cover 

dominated the vertices vi1, and vi+1 by putting a pebble at vi  and we have cover dominated the vertices 

uj1, and uj+1 by putting a pebble at uj.  Next, we have to cover dominate the remaining vertices which 

are in between the neighbor vertices of I.  

 For that, consider the paths PA: v0v1 . . . vm1vm and PB: v0u1u2 . . . um1.  First, consider the path 

PA: v0v1 . . .  vm1vm and two consecutive vertices which belong to I, say vi and vi+h  (i  0 and h > i)  in PA.  If 

both vi and vi+h are adjacent or connected by at most two vertices in PA then we have already cover 

dominated the vertices between vi and vi+h.  Otherwise consider the path PV : vi+1vi+2 . . . vi+h2.  So, we 



A. Lourdusamy and T. Mathivanan  13 

need 2
i+2

 (ψ (PV)) pebbles at vt to cover dominate the vertices of the path Pv  , since d(vt, vi+1)=i+2.  If  vm  

I then the path Pv ends with the vertex vm2, otherwise, the path Pv ends with vm-1 in PA, if um-1 I (this 

case arises for the last two consecutive vertices which belong to I in PA).  After this process, we would 

have cover dominated all the vertices of the path PA , using )(22 11
v

k

Iv

i

Iv
P

ki








  pebbles from 

vt, where vk is the initial vertex of the path Pv and  

 (Pv) = .
3,)(

210,0








vifvP

ororvif


 

 Now, we do the same thing for the other path PB : v0u1u2 . . . um1vm.  To cover dominate the 

vertices of the path PB, we need )(22 11

u

l

Iu

j

Iu
P

lj








  pebbles at vt where ul is the initial vertex 

of the path Pu and  

 









3,)(

210,0
)(

uifuP

ororuif
uP


  

 Now, we have cover dominated all the vertices of Cn. 
)d(

IR  , but we may use an extra pebble at 

v0 if both v1 and u1 are pebbled by the previous processes.  Thus we have to subtract one pebble from vt .  

Otherwise, we are already done.  

That is,  (vt) = 





unpebbledarebothoruorveitherif

pebbledareuandvbothif

11

11

0

1
 

 Thus we need, 
11 22 






 j

Iu

i

Iv ji

+ )()(2)(2 11

tu

l

Iu
v

k

Iv
vPP

lk

  






  

pebbles at vt to cover dominate the vertices of Cn.
)d(

IR  

 Now, consider another target vertex in R and label it by vt and then carry out the process 

described above.  Finally, we choose the one from R, which takes maximum number of pebbles to cover 

dominate the vertices of Cn. 
)d(

IR .  
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That is,  

Ψ(Cn.
)d(

IR ) =max
























 )()(12)(121212 tvuPl

Iu
vPk

Iv

j

Iu

i

Iv lkji


 

for all vt R.  

Case 2: Consider the sun Cn.
)d(

IR , where n = 2m – 1 (m  2).  

 By Lemma 2.2, fix a target vertex vt from the R distinct vertices not in Cn.  Label the target vertex 

by vt and then label the remaining vertices as given in Definition 2.1. Using 
11 22 






 j

Iu

i

Iv ji

 pebbles at 

vt, we can cover dominate all the vertices outside Cn for all vi , ujI. 

 Also, we have cover dominated the adjacent vertices of vi and uj in Cn.  Next, we have to cover 

dominate the remaining vertices in between the neighbor vertices of I.  

Case (2a): vm1 I and um1  I.  

 Consider the paths PA: v0v1v2 . . . vm1 and PB : v0u1u2 . . . um1.  First consider the path PA and two 

consecutive vertices which belong to I, say, vi and vi+h (i  0 and h > i).  So, we need )P(2 v

1k

Ivk

 


 

pebbles at vt to cover dominate the vertices of PA, where Pv:vi+1 ,vi+2 ,…,ǀi+h-2 and vk = vi+1 is the initial 

vertex of the path Pv. Since, vm1 I, the vertex um-1 is already cover dominated. A similar work can be 

done for the other path PB, that is, if um-2 I, then the path Pu ends with um-2. Otherwise, Pu ends with um-

3. Therefore, to cover dominate the vertices of the path PB we need )(2 1

u

l

Iu
P

l




  pebbles at vt. 

Case (2b): um1  I and vm1  I.  

 Consider the paths PA : v0v1v2 . . . vm1 and PB : v0u1u2 . . . um1.  First consider the path PB and two 

consecutive vertices which belong to I, say, ui and ui+h (i  0 and h > I, Here let u0 = v0).  So, we need 

)(2 1

u

l

Iu
P

l




  pebbles at vt to cover dominate the vertices of PB. A similar work can be done for the 

other path PA( as described in case(2a)). Thus, to cover dominate the vertices of the path PA we need 

)(2 1

v

k

Iv
P

k




  pebbles at vt.  
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 Case (2c): Both vm1 and um1  I. 

 Consider the paths PA : v0v1 . . . vm1 and PB : v0u1u2 . . . um1. Clearly, the paths Pu and Pv end with 

vm-1 and  um-1 respectively. So, we need )P(2 v

1k

Ivk

 


 to cover dominate the vertices of the path PA and 

)P(2 u

1l

Iu l

 


 to cover dominate the vertices of the path PB at vt. 

Case (2d): Both vm1 and um1  I. 

Consider the paths PA : v0v1 . . . vm1 and PB : v0u1u2 . . . um1. Clearly, the paths Pu and Pv end with vm-2 and  

um-2 respectively. So, we need )P(2)P(2 u

1l

Iu
v

1k

Iv lk

 






 pebbles to cover dominate the vertices of 

the paths PA and PB.  

Now, we cover dominate all the vertices of Cn.
)d(

IR .But there may be an extra pebble at v0  if 

both v1 and u1 are pebbled by the previous processes.  So, we have to subtract  one  pebble from vt. 

Otherwise, we are already done.  That is,  

  (vt) = 





unpebbledarebothoruorveitherif

pebbledareuandvbothif

11

11

0

1
 

 Thus, we need )()(2)(222 1111

tu

l

Iu
v

k

Iv

j

Iu

i

Iv
vPP

lkji

  














 pebbles at vt to 

cover dominate the vertices of Cn.
)d(

IR .  

Now, consider another target vertex in R and label it by vt and then carry out the process 

described above.  Finally, we choose the one from R, which takes maximum number of pebbles to cover 

dominate the vertices of Cn. 
)d(

IR .  

 Therefore, we get,  

ψ (Cn.
)d(

IR ) = max 






  














)()(2)(222 1111

tu

l

Iu
v

k

Iv

j

Iu

i

Iv
vPP

lkji

  

for all vt  R.                     
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Corollary 2.4 For R = Ŷ, ψ(Cn.
)d(

IR ) = 

1

2

3.2 7, 2 ( 2)
,

2 7, 2 1( 2)

m

m

if n m m

if n m m





   


   
 

  For R = n - 1, ψ(Cn.
)d(

IR ) = 

1

2

3.2 10, 2 ( 2)
.

2 10, 2 1( 2)

m

m

if n m m

if n m m





   


   
 

Proof: 

Case A: Let R = n. Without loss of generality, choose a vertex vt  R.  

Case A1: Let n = 2m (m  2). This implies that d(vt, vm) = m + 1. Note, (Pv) = (Pu) = 0, since v = 0 = u.  

 So, ψ(Cn.
)d(

IR ) = )(22 1
1

1

1

0
t

j

Iu

m

j

i

Iv

m

i
v

ji

 












 

   = 2+2
m+1

 + 













 







1
1

1
22 i

Iv

m

i

i

- 1   

   = 3. 2
m+1

  7, 

where the second equality follows since both v1 and u1  I. 

                  Therefore, ψ(Cn.
)d(

IR ) = 3. 2
m+1

  7 

Case A2: Let n = 2m – 1 (m  2). This implies that d(vt, vm1) = d(vt, um1) = m. Also, (Pv) = (Pu) = 0, since 

v = u = 0. 

 “o, ψ(Cn.
)d(

IR )= )(22 1
1

1

1
1

0
t

j

Iu

m

j

i

Iv

m

i
v

ji

 














 

      = 2+ 122 1
1

1
 





i
m

i
  

      = 2.2
m+1

  7, 

where the second equality follows since both v1 and u1  I. 
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        Therefore, ψ(Cn.
)d(

IR ) = 2
m+2

  7.                           

Case B: Let R = n – 1. This implies that, one vertex does not belong to I. First label the vertex by v1 and 

then label the remaining vertices of Cn.
)d(

IR , so that we get maximum number of pebbles at vt. Also, 

note (Pv) = 0 (since, v = 0 or 1) and (Pu) = 0 (since, u = 0 or 1).  

Case B1: Let n = 2m (m  2). 

 So, ψ(Cn.
)d(

IR )=2+ )(22 1
1

1

1

2
t

j
m

j

i
m

i
v 








 

      = 2+ 4)(222 1
1

1

1
1

1

1  










t

j
m

j

i
m

i

m v  

      = 42222 1
1

1

1  




 i
m

i

m
  

       = 3(
1m2 

)  10, 

where the third equality follows since v1  I. 

  Therefore, ψ(Cn.
)d(

IR ) = 3(
1m2 

)  10. 

Case B2: Let n = 2m – 1. 

 So,  ψ(Cn.
)d(

IR )=
1

1

1

1
1

2
222 









 j

m

j

i
m

i
   

     =2
m+2

  10, 

where the first equality follows since v1  I. 

     Therefore,  ψ(Cn.
)d(

IR ) = 2
m+2

  10.                                         
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